2 Kwok - Kwong Choi and Jeffrey

نویسندگان

  • Kwok-Kwong Choi
  • JEFFREY D. VAALER
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An old conjecture of Erdos-Turán on additive bases

There is a 1941 conjecture of Erdős and Turán on what is now called additive basis that we restate: Conjecture 0.1 (Erdős and Turán). Suppose that 0 = δ0 < δ1 < δ2 < δ3· · · is an increasing sequence of integers and

متن کامل

Herbs and Rehabilitation after Stroke Study: A Multi-center, Double-blinded, Randomized Trial in Hong Kong

Raymond Cheung, Li Xiong, Shek Kwan Chang, Choi Ting Tse, Yin Yu Pang, Vincent Mok, Thomas Leung, Tak Hong Tsoi, Richard Li, May Mok, Chee My Chang, Kwok Kwong Lau, Bun Sheng, Terrence Li, Jonas Yeung, Ping Chung Leung, Ping Chook, Ka Sing Wong Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong Department of Medicine and Therapeutics, The Chinese University of Hong Kong, ...

متن کامل

Continued Fractions of Tails of Hypergeometric Series

The tails of the Taylor series for many standard functions such as arctan and log can be expressed as continued fractions in a variety of ways. A surprising side effect is that some of these continued fractions provide a dramatic acceleration for the underlying power series. These investigations were motivated by a surprising observation about Gregory’s series. Gregory’s series for π, truncated...

متن کامل

A Numerical Bound for Baker's Constant - Some Explicit Estimates for Small Prime Solutions of Linear Equations

proved that there is an absolute constant V > 0 such that the linear equation a 1 p 1 + a 2 p 2 + a 3 p 3 = b has prime solutions p j 's if b (max j a j) V and a j > 0. Apart from the numerical value of V , the bound is sharp. In this manuscript, we obtain a numerical bound for V. We also obtain a numerical bound for the small prime solutions of the above equation if the a j 's are not all of t...

متن کامل

On the Representations of xy + yz + ZX

In view of this representation, Crandall asked what integers are of the form of xy + yz + xz with x, y, z ≥ 1 and he made a conjecture that every odd integer greater than one can be written as xy + yz + xz. In this manuscript, we shall show that Crandall’s conjecture is indeed true. In fact, we are able to show Theorem 1.1. There are at most 19 integers which are not in the form of xy + yz + xz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007